
YEAH A2
Fun with Collections

Welcome back to YEAH!
● A few logistics:

Welcome back to YEAH!
● A few logistics:

○ Check the YEAH A2 Ed post for the slides. For future YEAH sessions, I’ll try to get the slides
up before the session so that you can follow along :)

Welcome back to YEAH!
● A few logistics:

○ Check the YEAH A2 Ed post for the slides. For future YEAH sessions, I’ll try to get the slides
up before the session so that you can follow along :)

○ We will have all of our remaining YEAH hours at this time, every Saturday!

Welcome back to YEAH!
● A few logistics:

○ Check the YEAH A2 Ed post for the slides. For future YEAH sessions, I’ll try to get the slides
up before the session so that you can follow along :)

○ We will have all of our remaining YEAH hours at this time, every Saturday!
○ This assignment will be due Friday, January 29th at the start of class. Partners are not

permitted.

Assignment Overview
● This assignment only consists of two parts! (But they’ll be more involved 😉)

Assignment Overview
● This assignment only consists of two parts! (But they’ll be more involved 😉)

○ Part 1 - Rising Tides
■ Implement a Breadth-First Search to examine rising sea levels!

Assignment Overview
● This assignment only consists of two parts! (But they’ll be more involved 😉)

○ Part 1 - Rising Tides
■ Implement a Breadth-First Search to examine rising sea levels!

○ Part 2 - You Got Hufflepuff!
■ Ever want to be a Buzzfeed quiz maker? Me neither, but you need to do this to complete

the assignment.

Are you ready?

Are you ready?

Part 1: Rising Tides
● In this part of the assignment, you’ll be simulating water flooding over a

terrain with topography represented as a Grid<double>.

Part 1: Rising Tides
● In this part of the assignment, you’ll be simulating water flooding over a

terrain with topography represented as a Grid<double>.

Take a look at these grid representations of topography. Can you intuit anything about
the landscapes?

Part 1: Rising Tides
● For any given landscape, assume that a water source exists somewhere in the

world.

Here, it’s in the
top-left corner!

Part 1: Rising Tides
● For any given landscape, assume that a water source exists somewhere in the

world.
● Water can flow to adjacent squares in the four cardinal directions (N, W, E, S),

as long as the height of a square is less than or equal to the predefined water
level.

A different water level can
change how far water can
go in the same topography!

Part 1: Rising Tides
● For any given landscape, assume that a water source exists somewhere in the

world.
● Water can flow to adjacent squares in the four cardinal directions (N, W, E, S),

as long as the height of a square is less than or equal to the predefined water
level.

Depending on the water
level and the topography,
the spread can go nuts!

Part 1: Rising Tides
● For any given landscape, assume that a water source exists somewhere in the

world.
● Water can flow to adjacent squares in the four cardinal directions (N, W, E, S),

as long as the height of a square is less than or equal to the predefined water
level.

● Keep in mind that there can be multiple water sources!

Part 1: Rising Tides
● Your job is to implement this function:

Part 1: Rising Tides
● Your job is to implement this function:

● Here, terrain is the grid representing our topography, sources contains
the locations of our water sources, and height represents the highest value
that water can still spread to.

Part 1: Rising Tides
● Your job is to implement this function:

● Here, terrain is the grid representing our topography, sources contains
the locations of our water sources, and height represents the highest value
that water can still spread to.

● A GridLocation is a helpful struct that stores a {row, col} pair! Here’s how you
can use it:

You can also use GridLocation to
access into a grid like so:
GridLocation gl = {1,2};
Terrain[gl] = 0.0;

Part 1: Rising Tides
● Your job is to implement this function:

● You will be filling in terrain accordingly so that water in sources will flow
to all reachable cells at or under height.

Part 1: Rising Tides
● Your job is to implement this function:

● You will be filling in terrain accordingly so that water in sources will flow
to all reachable cells at or under height.
○ To fill a cell in the grid, set its value to True (cells above land are set to False by default)

Part 1: Rising Tides
● Your job is to implement this function:

● You will be filling in terrain accordingly so that water in sources will flow
to all reachable cells at or under height.
○ To fill a cell in the grid, set its value to True (cells above land are set to False by default)

● To do this, you’ll need to implement a Breadth First Search (BFS) algorithm.

Part 1: Rising Tides
● Your job is to implement this function:

● You will be filling in terrain accordingly so that water in sources will flow
to all reachable cells at or under height.
○ To fill a cell in the grid, set its value to True (cells above land are set to False by default)

● To do this, you’ll need to implement a Breadth First Search (BFS) algorithm.
○ Let’s talk a little more about this one.

It’s time for...

Search Algorithms with Al Gore: BFS edition

Al Gore, Former
Vice-President and
Algorithmic fiend, pictured
grappling with “Fun with
Collections”

Breadth First Search
● A good way to think about BFS is with a literal flood or spill, where a source

expands outwards to all reachable locations.

Breadth First Search
● A good way to think about BFS is with a literal flood or spill, where a source

expands outwards to all reachable locations.
○ Here’s an example of a BFS “exploring”, or “flooding” a maze

■ Furthermore, you can imagine how this would be a valid way to find an exit in a maze!

Breadth First Search
● Here is very good pseudocode for how to write up a BFS to solve this problem:

Breadth First Search
● Here is very good pseudocode for how to write up a BFS to solve this problem:

This is the
tricky part!

Breadth First Search
● Here is very good pseudocode for how to write up a BFS to solve this problem:

This is the
tricky part!

Here, you’ll need to figure out how
to write a loop that loops through
only the 4 cardinal neighbors of
the current location! You’ll have to
be creative here if you don’t want
to write redundant code :)

Breadth First Search
● Here is very good pseudocode for how to write up a BFS to solve this problem:

This is the
tricky part!

Here, you’ll need to figure out how
to write a loop that loops through
only the 4 cardinal neighbors of
the current location! You’ll have to
be creative here if you don’t want
to write redundant code :)

Can I make anything clearer
on this slide? Any questions?

Part 1: Rising Tides
● Once you get that BFS up and running, you should be good to go!

Part 1: Rising Tides
● Once you get that BFS up and running, you should be good to go!

○ Please add at least ONE custom test case to the test harness before you move on, however.
We won’t test for everything with the provided tests!

Part 1: Rising Tides
● Once you get that BFS up and running, you should be good to go!

○ Please add at least ONE custom test case to the test harness before you move on, however.
We won’t test for everything with the provided tests!

● A few final thoughts about the problem:

Part 1: Rising Tides
● Once you get that BFS up and running, you should be good to go!

○ Please add at least ONE custom test case to the test harness before you move on, however.
We won’t test for everything with the provided tests!

● A few final thoughts about the problem:
○ There doesn’t need to be a correlation between cells in the terrain. Neighboring cells can go

from large positive values to negative values!

Part 1: Rising Tides
● Once you get that BFS up and running, you should be good to go!

○ Please add at least ONE custom test case to the test harness before you move on, however.
We won’t test for everything with the provided tests!

● A few final thoughts about the problem:
○ There doesn’t need to be a correlation between cells in the terrain. Neighboring cells can go

from large positive values to negative values!
○ Remember to use the grid.inBounds() function so that you don’t go off the grid during

your BFS!

Part 1: Rising Tides
● Once you get that BFS up and running, you should be good to go!

○ Please add at least ONE custom test case to the test harness before you move on, however.
We won’t test for everything with the provided tests!

● A few final thoughts about the problem:
○ There doesn’t need to be a correlation between cells in the terrain. Neighboring cells can go

from large positive values to negative values!
○ Remember to use the grid.inBounds() function so that you don’t go off the grid during

your BFS!
○ If the initial height of a source block is higher than the flood level, you shouldn’t flood

anything.

Questions about part 1?

Part 2: You Got Hufflepuff!
● You know these quizzes?

Part 2: You Got Hufflepuff!
● You know these quizzes?

Part 2: You Got Hufflepuff!
● You know these quizzes?

Part 2: You Got Hufflepuff!
● In this last part of the assignment, you’ll be implementing a personality quiz,

like the ones you see on Buzzfeed, or other wastes of time popular websites.

Part 2: You Got Hufflepuff!
● In this last part of the assignment, you’ll be implementing a personality quiz,

like the ones you see on Buzzfeed, or other wastes of time popular websites.
● More specifically, you’ll be responsible for writing the functionality to do a

few things:

Part 2: You Got Hufflepuff!
● In this last part of the assignment, you’ll be implementing a personality quiz,

like the ones you see on Buzzfeed, or other wastes of time popular websites.
● More specifically, you’ll be responsible for writing the functionality to do a

few things:
○ Pick a random question to ask out of a Set of questions

Part 2: You Got Hufflepuff!
● In this last part of the assignment, you’ll be implementing a personality quiz,

like the ones you see on Buzzfeed, or other wastes of time popular websites.
● More specifically, you’ll be responsible for writing the functionality to do a

few things:
○ Pick a random question to ask out of a Set of questions
○ Turn a collection of question/answer pairs into a “personality score”

Part 2: You Got Hufflepuff!
● In this last part of the assignment, you’ll be implementing a personality quiz,

like the ones you see on Buzzfeed, or other wastes of time popular websites.
● More specifically, you’ll be responsible for writing the functionality to do a

few things:
○ Pick a random question to ask out of a Set of questions
○ Turn a collection of question/answer pairs into a “personality score”
○ Normalize those scores to account for sampling differences

Part 2: You Got Hufflepuff!
● In this last part of the assignment, you’ll be implementing a personality quiz,

like the ones you see on Buzzfeed, or other wastes of time popular websites.
● More specifically, you’ll be responsible for writing the functionality to do a

few things:
○ Pick a random question to ask out of a Set of questions
○ Turn a collection of question/answer pairs into a “personality score”
○ Normalize those scores to account for sampling differences
○ Take the cosine similarity of two personality scores to determine their closeness

Part 2: You Got Hufflepuff!
● In this last part of the assignment, you’ll be implementing a personality quiz,

like the ones you see on Buzzfeed, or other wastes of time popular websites.
● More specifically, you’ll be responsible for writing the functionality to do a

few things:
○ Pick a random question to ask out of a Set of questions
○ Turn a collection of question/answer pairs into a “personality score”
○ Normalize those scores to account for sampling differences
○ Take the cosine similarity of two personality scores to determine their closeness
○ Find the best match between a user’s personality score and the personality scores of fictional

characters

Milestone 1: Select Random Questions
● In this first milestone, you need to implement the following function:

Milestone 1: Select Random Questions
● In this first milestone, you need to implement the following function:

● For now, don’t worry about what a Question struct holds.

Milestone 1: Select Random Questions
● In this first milestone, you need to implement the following function:

● For now, don’t worry about what a Question struct holds.
○ An important part of Computer Science is being able to work with objects without necessarily

knowing the underlying implementations! This is the key behind abstraction.

Milestone 1: Select Random Questions
● In this first milestone, you need to implement the following function:

● For now, don’t worry about what a Question struct holds.
○ An important part of Computer Science is being able to work with objects without necessarily

knowing the underlying implementations! This is the key behind abstraction.
● Your job is to pick a random element from unaskedQuestions, remove it

from the set, and return it!

Milestone 1: Select Random Questions
● In this first milestone, you need to implement the following function:

● For now, don’t worry about what a Question struct holds.
○ An important part of Computer Science is being able to work with objects without necessarily

knowing the underlying implementations! This is the key behind abstraction.
● Your job is to pick a random element from unaskedQuestions, remove it

from the set, and return it!
○ The function randomElement(someSet) might be helpful here :)

Milestone 1: Select Random Questions
● In this first milestone, you need to implement the following function:

● For now, don’t worry about what a Question struct holds.
○ An important part of Computer Science is being able to work with objects without necessarily

knowing the underlying implementations! This is the key behind abstraction.
● Your job is to pick a random element from unaskedQuestions, remove it

from the set, and return it!
○ The function randomElement(someSet) might be helpful here :)

● Any questions? This first part isn’t meant to trip you up :]

Milestone 2: Compute Scores from Question/Answer Pairs
● Now we can take a closer look at the Question struct!

Milestone 2: Compute Scores from Question/Answer Pairs
● Now we can take a closer look at the Question struct!

● We don’t care too much about the body of the question, but we do care about
the factors map, because it stores both a question’s personality factors,
and their weights!

Milestone 2: Compute Scores from Question/Answer Pairs
● Now we can take a closer look at the Question struct!

● We don’t care too much about the body of the question, but we do care about
the factors map, because it stores both a question’s personality factors,
and their weights!
○ For your assignment, you’ll be using a 5-factor personality score called OCEAN (openness,

conscientiousness, extraversion, agreeableness, and neuroticism)

Milestone 2: Compute Scores from Question/Answer Pairs
● Now we can take a closer look at the Question struct!

● We don’t care too much about the body of the question, but we do care about
the factors map, because it stores both a question’s personality factors,
and their weights!
○ For your assignment, you’ll be using a 5-factor personality score called OCEAN (openness,

conscientiousness, extraversion, agreeableness, and neuroticism)
○ Weights are either +1 or -1. A weight of zero will simply not manifest a key in the map.

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s what the contents of factors might look like:

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s what the contents of factors might look like:

● This signifies that the given question would attribute +1 to both ‘O’ and ‘N’
categories.

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s what the contents of factors might look like:

● This signifies that the given question would attribute +1 to both ‘O’ and ‘N’
categories.
○ Notice how the other 3 factors have no value in the map! This means this question didn’t

address those factors!

Milestone 2: Compute Scores from Question/Answer Pairs
● In this part, you’ll need to implement the following function:

Milestone 2: Compute Scores from Question/Answer Pairs
● In this part, you’ll need to implement the following function:

● Where, given a map of user responses to questions, returns an aggregate of
the user’s personality scores.

Milestone 2: Compute Scores from Question/Answer Pairs
● In this part, you’ll need to implement the following function:

● Where, given a map of user responses to questions, returns an aggregate of
the user’s personality scores.

● Here’s what the map answers might look like:

Remember that inside
of each Question struct
is the question text
AND the factors map!

Milestone 2: Compute Scores from Question/Answer Pairs
● Some more notes about this diagram:

Milestone 2: Compute Scores from Question/Answer Pairs
● Some more notes about this diagram:

○ Each answer integer corresponds to a
different weight. 5 corresponds to “strongly
agree” and 1 corresponds to “strongly
disagree”

Milestone 2: Compute Scores from Question/Answer Pairs
● Some more notes about this diagram:

○ Each answer integer corresponds to a
different weight. 5 corresponds to “strongly
agree” and 1 corresponds to “strongly
disagree”

○ An answer of 3 corresponds to indifference, and doesn’t contribute any values to one’s
personality score. This set of question/answers simply didn’t have any responses of 3.

Milestone 2: Compute Scores from Question/Answer Pairs
● Some more notes about this diagram:

○ Each answer integer corresponds to a
different weight. 5 corresponds to “strongly
agree” and 1 corresponds to “strongly
disagree”

○ An answer of 3 corresponds to indifference, and doesn’t contribute any values to one’s
personality score. This set of question/answers simply didn’t have any responses of 3.

Milestone 2: Compute Scores from Question/Answer Pairs
● Some more notes about this diagram:

○ Each answer integer corresponds to a
different weight. 5 corresponds to “strongly
agree” and 1 corresponds to “strongly
disagree”

○ An answer of 3 corresponds to indifference, and doesn’t contribute any values to one’s
personality score. This set of question/answers simply didn’t have any responses of 3.

○ This diagram shows a sampler of only 4 question/answer pairs. You should expect to see
multiple of each answer (i.e more than one of each answer number) in the maps that you have
to process!

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s how you can aggregate the user’s score:

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s how you can aggregate the user’s score:

○ If a question has an answer of 3, you can disregard the question. You should not make keys in
the map for this question’s factors.

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s how you can aggregate the user’s score:

○ If a question has an answer of 3, you can disregard the question. You should not make keys in
the map for this question’s factors.

○ When a question has a non-3 answer, for each of the char factors for a question, you’ll need
to multiply the corresponding integer value according to this table:

Response Multiplier

1 *-2

2 *-1

4 *1

5 *2

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s how you can aggregate the user’s score:

○ If a question has an answer of 3, you can disregard the question. You should not make keys in
the map for this question’s factors.

○ When a question has a non-3 answer, for each of the char factors for a question, you’ll need
to multiply the corresponding integer value according to this table:

Response Multiplier

1 *-2

2 *-1

4 *1

5 *2

Applying this, if a question has
factors ‘E’ → +1, ‘A’ → -1, and the
user has an answer ‘1’, you should add
(-2) to the aggregate ‘E’ score and (+2)
to the aggregate ‘A’ score in the
map<char,int> that you’ll return.

Milestone 2: Compute Scores from Question/Answer Pairs
● Here’s how you can aggregate the user’s score:

○ If a question has an answer of 3, you can disregard the question. You should not make keys in
the map for this question’s factors.

○ When a question has a non-3 answer, for each of the char factors for a question, you’ll need
to multiply the corresponding integer value according to this table:

Response Multiplier

1 *-2

2 *-1

4 *1

5 *2

Applying this, if a question has
factors ‘E’ → +1, ‘A’ → -1, and the
user has an answer ‘1’, you should add
(-2) to the aggregate ‘E’ score and (+2)
to the aggregate ‘A’ score in the
map<char,int> that you’ll return.

Once you’ve done this for
all of the provided
question/answers, return
the map!

Milestone 2: Compute Scores from Question/Answer Pairs
● Some final notes about this problem:

Milestone 2: Compute Scores from Question/Answer Pairs
● Some final notes about this problem:

○ You can assume that the answers you get are always 1-5. That being said, if you wanted to
write a more robust program, you could introduce some error handling for inputs outside of
that range!

Milestone 2: Compute Scores from Question/Answer Pairs
● Some final notes about this problem:

○ You can assume that the answers you get are always 1-5. That being said, if you wanted to
write a more robust program, you could introduce some error handling for inputs outside of
that range!

○ You cannot assume that the characters you encounter in your questions use the “OCEAN”
paradigm!

Milestone 2: Compute Scores from Question/Answer Pairs
● Some final notes about this problem:

○ You can assume that the answers you get are always 1-5. That being said, if you wanted to
write a more robust program, you could introduce some error handling for inputs outside of
that range!

○ You cannot assume that the characters you encounter in your questions use the “OCEAN”
paradigm!
■ This means you can’t pre-define a map with 5 keys in it!

Milestone 2: Compute Scores from Question/Answer Pairs
● Some final notes about this problem:

○ You can assume that the answers you get are always 1-5. That being said, if you wanted to
write a more robust program, you could introduce some error handling for inputs outside of
that range!

○ You cannot assume that the characters you encounter in your questions use the “OCEAN”
paradigm!
■ This means you can’t pre-define a map with 5 keys in it!
■ To get around this, you could use something called map auto-insertion. Basically, when

you write code like this:

The map will attempt to look for key ‘Q’ and add to its value, but if the key is not
present, it will automatically insert the key with a default value (for integers, it’s zero!)

Milestone 2: Compute Scores from Question/Answer Pairs
● A few more reminders:

Milestone 2: Compute Scores from Question/Answer Pairs
● A few more reminders:

○ Remember to skip questions that have answer ‘3’! This will help you keep unused keys out of
the map!

Milestone 2: Compute Scores from Question/Answer Pairs
● A few more reminders:

○ [UPDATED] Even if a factor is only represented through answers of ‘3’, you shouldn’t exclude
its key from the map. Just include it with a value ‘0’.

○ Here’s an easy way to loop through a map:

Milestone 2: Compute Scores from Question/Answer Pairs
● A few more reminders:

○ [UPDATED] Even if a factor is only represented through answers of ‘3’, you shouldn’t exclude
its key from the map. Just include it with a value ‘0’.

○ Here’s an easy way to loop through a map:

This is probably the most challenging milestone, so plan accordingly!

Any questions?

Milestone 3: Normalize Scores
● Now it’s time to do some math! You’ll be implementing this function:

Milestone 3: Normalize Scores
● Now it’s time to do some math! You’ll be implementing this function:

● Your job is to loop through the scores map and divide each score by the
following value:

Milestone 3: Normalize Scores
● Now it’s time to do some math! You’ll be implementing this function:

● Your job is to loop through the scores map and divide each score by the
following value:
○ Recall that not all maps will contain the OCEAN keys -- in general form, this is simply the

square root of the sum of all values in the map individually squared.

Milestone 3: Normalize Scores
● Now it’s time to do some math! You’ll be implementing this function:

● Your job is to loop through the scores map and divide each score by the
following value:
○ Recall that not all maps will contain the OCEAN keys -- in general form, this is simply the

square root of the sum of all values in the map individually squared.
● You can then store these values in a new map with identical keys to scores.

The values will be the old integer values divided by the above calculation.

Milestone 3: Normalize Scores
● A few notes about this milestone:

○ You should compute the square root sum first, and then populate the resultant map!

Milestone 3: Normalize Scores
● A few notes about this milestone:

○ You should compute the square root sum first, and then populate the resultant map!
○ The keys in the resulting map should be exactly the same as the original map.

Milestone 3: Normalize Scores
● A few notes about this milestone:

○ You should compute the square root sum first, and then populate the resultant map!
○ The keys in the resulting map should be exactly the same as the original map.
○ Another reminder that the keys do not need to be OCEAN!

Milestone 3: Normalize Scores
● A few notes about this milestone:

○ You should compute the square root sum first, and then populate the resultant map!
○ The keys in the resulting map should be exactly the same as the original map.
○ Another reminder that the keys do not need to be OCEAN!
○ If you #include the <cmath> header, you can use the sqrt() function! Be aware that it

returns a double!

Milestone 3: Normalize Scores
● A few notes about this milestone:

○ You should compute the square root sum first, and then populate the resultant map!
○ The keys in the resulting map should be exactly the same as the original map.
○ Another reminder that the keys do not need to be OCEAN!
○ If you #include the <cmath> header, you can use the sqrt() function! Be aware that it

returns a double!
○ IMPORTANT: If the input map contains ONLY zero values, you should raise an error(). This

is because we’d be forced to divide by zero!

Any questions?

Milestone 4: Implement Cosine Similarity
● Don’t worry! This part isn’t as bad as it sounds :)

Milestone 4: Implement Cosine Similarity
● You’ll need to implement this function:

which returns a single double signifying how similar two normalized
personality scores are! (This value is bounded between -1 and 1)

Milestone 4: Implement Cosine Similarity
● You’ll need to implement this function:

which returns a single double signifying how similar two normalized
personality scores are! (This value is bounded between -1 and 1)

● Here is how you do this calculation (remember that this is OCEAN specific,
and you’ll need to generalize yours! (What do you do if the maps have different keys?)

You can assume that these scores are normalized :). Any questions?

Milestone 5: Find The Best Match!
● Nice work! You’ve made it to the last milestone!

Milestone 5: Find The Best Match!
● Nice work! You’ve made it to the last milestone!
● You finally get to find a given user’s best match by implementing this

function:

Milestone 5: Find The Best Match!
● Nice work! You’ve made it to the last milestone!
● You finally get to find a given user’s best match by implementing this

function:

● You’ll need to normalize the user’s scores, and then loop through the Set
of people. Here’s what a Person looks like

Milestone 5: Find The Best Match!
● Nice work! You’ve made it to the last milestone!
● You finally get to find a given user’s best match by implementing this

function:

● You’ll need to normalize the user’s scores, and then loop through the Set
of people. Here’s what a Person looks like

Milestone 5: Find The Best Match!
● Nice work! You’ve made it to the last milestone!
● You finally get to find a given user’s best match by implementing this

function:

● You’ll need to normalize the user’s scores, and then loop through the Set
of people. Here’s what a Person looks like

oops.

Milestone 5: Find The Best Match!
● Nice work! You’ve made it to the last milestone!
● You finally get to find a given user’s best match by implementing this

function:

● You’ll need to normalize the user’s scores, and then loop through the Set
of people. Here’s what a Person looks like

Milestone 5: Find The Best Match!
● Nice work! You’ve made it to the last milestone!
● You finally get to find a given user’s best match by implementing this

function:

● You’ll need to normalize the user’s scores, and then loop through the Set
of people. Here’s what a Person looks like

As you can see, each Person has a
scores Map! For each person, you’ll
need to normalize their score and
then find the person who has the
highest cosine similarity to the
original user’s score. This is the
Person you should return!

Milestone 5: Find The Best Match!
● Some final notes on this problem:

○ Don’t try and take the cosine similarity of a score before you normalize it!

Milestone 5: Find The Best Match!
● Some final notes on this problem:

○ Don’t try and take the cosine similarity of a score before you normalize it!
○ If the People Set is empty, you should throw an error!

Milestone 5: Find The Best Match!
● Some final notes on this problem:

○ Don’t try and take the cosine similarity of a score before you normalize it!
○ If the People Set is empty, you should throw an error!
○ You can break ties however you’d like!

Milestone 5: Find The Best Match!
● Some final notes on this problem:

○ Don’t try and take the cosine similarity of a score before you normalize it!
○ If the People Set is empty, you should throw an error!
○ You can break ties however you’d like!
○ Be aware that cosine similarities can be positive or negative. This means that a user can

match with someone with a negative cosine similarity!

Questions about this last part?

Part 3: Revel in your Creations!
● Once all of your tests pass, you can run the GUI portions for your work! This

is optional, but I’d recommend it :)

That’s it!
● Congrats! We hope you had fun with collections :)

Stack Efron, High School Musician and
CS106B alum, congratulates you on your
hard work!

